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Vortex lattice structures to occur in Rashba noncentrosymmetric superconductors under a magnetic field
parallel to the basal plane are studied by assuming the s-wave pairing and taking account of both the para-
magnetic and orbital depairings. A high-field vortex lattice with a modulation perpendicular to the field and of

Fulde-Ferrell-Larkin-Ovchinnikov type, occurring in the limit of vanishing �̃ �spin-orbit coupling normalized

by Fermi energy�, is found to be replaced with increasing �̃ by another vortex lattice with a modulation of the
gap amplitude and induced by the absence of inversion symmetry. A correlation between a structural transition
and an inflection of the Hc2�T� curve is discussed in relation to Hc2 data of CeRhSi3.
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Recently, superconductivity in materials with no inversion
symmetry has been a focus of intense interest.1,2 A spin-orbit
coupling due to the absence of an inversion symmetry may
lead to coexistence of spin-singlet and triplet pairing states
and may result in new phenomena stemming from the pair-
ing symmetries.3,4 Another interest is a consequence of the
noncentrosymmetry in superconductivity in nonzero mag-
netic fields. An interplay of the Zeeman effect and a splitting
of Fermi surface �FS� due to the spin-orbit coupling was
shown to, in fields �H�c� parallel to the basal �a-b� plane,
lead to a helical phase modulation5 of the superconducting
order parameter ��r� similar to the Fulde-Ferrell state6 in a
Pauli-limited superconductor as far as the densities of states
Nj on the two split FSs, denoted by j=1 2, are different from
each other. Later, the mixed state was studied by invoking
the Pauli limit7 with no vortices, and, just as in the cen-
trosymmetric case, the presence of a modulation of the am-
plitude ��� of Larkin-Ovchinnikov �LO� type8 was argued
which is separated by a single transition from the phase-
modulated state in lower fields. However, it is natural to
expect appearance of a different superconducting phase from
those in the centrosymmetric case.

In this work, mixed or vortex states occurring in Rashba
noncentrosymmetric materials1 in H�c are investigated in
clean limit by assuming the s-wave pairing and by incorpo-
rating both the paramagnetic and orbital depairings. Based
on existing estimates4 of the spin-orbit coupling energy � in
real noncentrosymmetric materials, the relation EF���Tc
between relevant energy scales will be reasonably assumed,
where EF is the Fermi energy and Tc is the zero-field �H
=0� superconducting transition temperature. Then, the key
parameter measuring the broken inversion symmetry in su-
perconductivity is �N= �N1−N2� / �N1+N2� which is on the

order of �̃�� /EF rather than kBTc /�. The main focus in
H�c, where the paramagnetic depairing is effective, is to
understand effects of the absence of inversion symmetry on a
modulated state of LO type at higher H and at lower tem-
peratures. Our findings are summarized as follows: in the
specific limit, �N→0, the LO-type state with a modulation
perpendicular to H occurs as a result of the paramagnetic
depairing and is transformed with decreasing H into an Abri-
kosov lattice through two first-order structural transitions
�FOSTs�. However, changes in the lattice structure obeying

the shift of FSs induced by the Zeeman energy do not occur.
Once a small but nonzero �N is taken into account, however,
the LO-type state is pushed up to higher H, and an interme-
diate phase appears accompanied by an amplitude modula-
tion parallel to the direction of the helical phase modulation
as a consequence of the lack of inversion symmetry. As ��N�
is increased so that the LO-type state disappears, the high-
field side of the H-T phase diagram is entirely occupied by
this modulated state. By comparing these results with those
in the Pauli limit,7 essential roles of the orbital depairing in
this issue are emphasized.

We start from a BCS-like Hamiltonian,

HBCS = �
k,s1,s2

ck,s1

† ��k�s1,s2
+ ��ĝk + �BH� · �s1,s2

�ck,s2

− �	��
q


q
†
q, �1�

where �BH is the Zeeman energy, �k denotes the bare band

energy, and ĝk is the unit vector �k̂� ẑ� with ẑ perpendicular
to the basal �a-b or x-y� plane. A Ginzburg-Landau �GL� free
energy F will be derived within the mean-field approxima-
tion and in type-II limit with no variation in flux density. As
performed elsewhere,1 diagonalization of the quadratic term
leads to a splitting of FS into two branches �j=1,2�,
and, consistently with this, the pair-field operator

q=−i�k��y��c−k+q/2�ck+q/2 may be rewritten in terms of
the field operator akj on each band as
�k� j f j�k�a−k+q/2jak+q/2j,

9 where f j�k� satisfies �f j�=1
and its detailed expression is not necessary within
the weak-coupling BCS theory. In reaching the latter
expression, a small contribution due to interband interactions
of O��H

3 � to F was neglected, where �H=max��BH ,Tc� /�.
By replacing the interaction term in Eq. �1� by
�d3r��	�−1���2−
†�−
��� in terms of the order parameter
�, expanding the free energy in � results in F. Its quadratic
term is given by

F2 =	 d3r���r�
 1

�	�
− 	

0

�

d�
2�TN�O��;�Q��

sinh�2��T� ��r� ,

where N=N1+N2, � � denotes the average over the momen-
tum k on FSs, and
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O��;�Q� =
1

2 �
�=�1

�exp�− i��vxQ��cos�2�BHk̂x��

+ i��N sin�2�BHk̂x����exp�− i��v · �Q�
�2�

under H parallel to ŷ, where �Q=−i� +2eA−Qx̂,
v=v�+vzẑ is the velocity vector on FSs, and a possible
modulation wave vector Q�Qx̂ was introduced �see below�.
The k̂x dependence accompanying �BH implies that the para-
magnetic depairing does not work effectively in the free-
energy terms associated with the gradient parallel to H.
Thus, in contrast to the centrosymmetric case,10,11 ��r� solu-
tions modulating along H never appear in Rashba supercon-
ductors. In H�HP�0�, where HP�0�=��0� /�2�B is the
Pauli-limiting field, the factor prior to exp�−i��v ·�Q� is ap-
proximated by unity if Q=Q0�2�BH�N / �v��,5 and then, �
is diagonalized in terms of Landau levels �LLs� with even
indices, �=�na2n�2n�r−Q0rH

2 ẑ �0�, where rH
−2=2eH and

�0�r �0� is an Abrikosov lattice solution in the lowest
�n=0� LL and is one of magnetic Bloch states10 �n�r �r0� in
the same gauge A=Hzx̂. Note that, using the property
�n�r �r0�=exp�iz0x /rH

2 ��n�r+r0 �0�,10 we have the form of
the helical state,5 �=exp�iQ0x��na2n�2n�r �−Q0rH

2 ẑ�. There-
fore, the helical phase modulation5 in H�HP merely corre-
sponds to a uniform displacement of the vortices. By con-
trast, in H�HP�0�, the �N-dependent imaginary terms
cannot be erased from the factor prior to exp�−i��v ·�Q� in
Eq. �2� any longer and result in a � solution represented by
both even and odd LLs. This hybridization of even and odd
LLs in equilibrium is a feature stemming from the lack of
inversion symmetry and, as shown below, leads to another
vortex state.

Hereafter, we use a bare FS of the form10 of a corrugated
cylinder extending along ẑ and with a coherence length an-
isotropy �=�x /�z=6, where �� is the coherence length in �
direction. However, no layer structure is assumed in real
space. Quantitatively similar results should follow in terms
of an ellipsoidal FS with a similar � value as far as H� ẑ.
The paramagnetic depairing is measured by the Maki param-
eter in H � ẑ, M

�z��7.1�BHorb
�2D��0� / �2�Tc�, where Horb

�2D��0� is
the two-dimensional �2D� orbital-limiting field. Note that the
argument of the trigonometric functions in Eq. �2� is propor-
tional to M

�z�h, where h=H /Horb
�2D��0�. At least in M

�z��2, the
high-field state in low T, as in various centrosymmetric
systems,11,12 is described by higher LLs.

In examining the details of H-T phase diagrams by
including higher LLs, the best approach will be to
diagonalize F2 in terms of �=�nan�n�r−QrH

2 ẑ �0�
with the consistent minimization in Q, �F /�Q=0,9

implying that the total current is zero, where �0�r �0�
=�pexp�ikpx−��z+kprH

2 �2 / �2rH
2 �+ i�k2rH

2 p2 cot � /2�� and
the parameters k and � determine the vortex lattice structure.
Due to inclusion of numerous LLs, however, it is not trac-
table to perform the Q minimization exactly. As an alterna-
tive approach, we first choose Q=Q0 and try to cure the
deviation Q−Q0 by incorporating more numerous LLs. In
this procedure, a finite uniform current due to the deviation

Q−Q0 should be canceled by the corresponding one10 arising
from the even-odd LL mixings.13 Besides, inclusion of more
LLs is needed, even when �N=0, with increasing M

�z�.11,12

Thus, a truncation of LLs might lead to an ambiguity in
numerical results with increasing ��N� or M

�z�. However, we
have verified in the range M

�z��5 and for 0��N�0.2 that
vortex lattice structures following from eight LLs �n�7� are
essentially unaffected by adding two higher LLs further. Be-
low, we will focus on � expressed by the eight LLs with
Q=Q0. Then, by diagonalizing F2, the resulting superposi-
tion of LLs with the lowest energy is chosen at each �T ,H�
as a candidate of � in equilibrium. We note that the details of
FSs are encoded as the relative weight between LLs in �.

Next, after substituting the resulting candidate of � into
the quartic term F4 of F, the parameters �k ,�� in �0�r �0� are
determined by minimizing F4 at each �T ,H�. However, a full
evaluation of F4 is a hard task because of spatially nonlocal
corrections11 in F4 and of the inclusion of numerous LLs.
Fortunately, since roles of the nonlocal corrections tend to be
reduced with increasing M

�z�,14 it is proper in the present case
to replace F4 derived microscopically by a spatially local
conventional one, F4,loc=c4�d3r���r��4, where the constant c4
is derived microscopically. Further, we have verified that
F4�0 by assuming � expressed by a single LL or by a
couple of LLs as the candidate, suggesting that the Hc2 tran-
sition is of second order in Rashba superconductors. For
these reasons, we have examined the lattice structures using
F4,loc with a positive c4. Note that, to determine the stable
structure at each �T ,H�, the H and T dependences of c4 are
not needed.

Let us start with explaining the resulting phase diagram in
the limiting �N=0 case where Q=0 �Ref. 5� �Fig. 1�. We find
that, through diagonalizing F2, Hc2�T� for �N=0 is separated
by an FOST �FOST1� into one branch above FOST1 deter-
mined by only odd LLs and another one below it due only to
even LLs. We have verified that this division into the odd
and even branches for �N=0 remains valid at least in the
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FIG. 1. �Color online� A h-t phase diagram for M
�z�=2.85 and

�N=0 obtained by including LLs with 0�n�7 in �, where
t=T /Tc0. Each red �blue� solid curve denotes an FOST �Hc2�T��.
Insets show real-space patterns of ���x ,z��2 at the indicated �t ,h�
points. The axis of cylindrical FS is parallel to ẑ, while Q � x̂. The
Pauli-limiting field corresponds to h=0.496.
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range M
�z��7. Above FOST1, the state below Hc2 is the LO-

type phase formed by only odd LLs, while it has no addi-
tional nodal lines below FOST1 where only even LLs par-
ticipate in. As the insets �A� and �B� show, the nodal lines in
the LO-type state are removed in passing through FOST1 by
decreasing H. In any state we obtain, the periodicity in z of
��� appears as a periodicity of vortex positions. The energy
of �A� is quite close to but slightly lower than that of a
similar structure with nodal lines perpendicular to Q.
Namely, the orientation of nodal lines is controlled by inter-
actions between the vortices and is unaffected by the details
of FSs. In fact, the spacing between neighboring nodal lines
is not of O��v�� /�BH� �Ref. 7� but of O�rH�, reflecting the
details in real space rather than in the k space. The lattice �B�
is continuously transformed into a deformed square lattice
�C� with a smooth rotation of the wreckage of the LO nodal
lines. Figure 1 includes another weak FOST �FOST2� in
lower H: the lattice �C� discontinuously changes through
FOST2 into the familiar triangular one �D� with decreasing
H. Since the odd LLs do not appear around FOST2, the
origin of FOST2 is the mixing of even higher LLs with n
�6 becoming more important for larger M

�z�. This transition
on the lattice symmetry might correspond to that suggested
in Ref. 5. However, it was not considered there5,7 consis-
tently with the appearance of the LO-type state in higher H

in the same phase diagram. Moreover, the fact that some
lattice structures in Fig. 1 have no reflection symmetry in z
suggests a possibility of two lattice domains in this artificial
case with �N=0.

Figure 2 shows examples of the H-T phase diagrams in
�N�0 case where the even and odd LLs are mixed with one
another. Even a small enough ��N� ��0.003� divides the in-
termediate phase in Fig. 1 surrounded by FOST1, FOST2,
and Hc2�T� into two regions separated by another FOST
�FOST3�. Once �N becomes nonzero, a striped phase, �B� in
Fig. 2�a�, begins to appear near the three transition lines sur-
rounding �B� and �C� of Fig. 1. Due to a slight increase in
��N�, the growing phase pushes the region including �D�,
similar to �C� of Fig. 1, down to lower temperatures �see the
arrows in Fig. 2�a��, and the nodal lines of the LO-type phase
�A� disappear reflecting the even-odd LL mixing. The striped
state consists of rows of vortices, separated by two neighbor-
ing stripes perpendicular to Q on which ��� is nonvanishing,
and the interstripe spacing is the structural period parallel to
Q. With decreasing h, this phase shows a continuous cross-
over to a square lattice, �C� in Fig. 2�a�, just above FOST2.
Furthermore, a further increase in ��N� not only expands the
region of the phase and the square lattice to shift FOST2 to
lower h but also elevates FOST1 up to Hc2�T� so that the
LO-type phase is lost. Since ��N���, the expansion at larger
��N� of the phase supported by the nonzero Q � x̂ is reason-
able. Through a comparison with Fig. 1, it is seen that an
increase in ��N� enhances Hc2 and compresses the structure
along ẑ. Furthermore, Figs. 2�a� and 2�b� also show that,
irrespective of ��N�, FOST2 merges with an inflective point
of Hc2�T� in each figure at which d2Hc2 /dT2 changes in sign.
This feature may become relevant in experimentally verify-
ing vortex lattice structures found here.

To clarify implication of the above result further, it will be
compared with Fig. 3, in which only the two lowest LLs
�n=0 and 1� are kept, and � is expressed by �01=a0�0
+a1�1. When �N=0, the situation is essentially the same as
that in a centrosymmetric system near Hc2.11 The two LLs do
not coexist in equilibrium, and a single FOST separating two
states with different structural symmetries occurs. The low-
field state is the triangular vortex lattice with a1=0, while the
high-field phase expressed only by the n=1 LL is an LO-type
phase composed of an alternation of a vortex row and a

FIG. 2. �Color online� Corresponding ones to Fig. 1 for �a�
�N=0.003 and �b� 0.2. The state below FOST2 is the triangular
lattice everywhere.
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FIG. 3. �Color online� A h-t phase diagram for ��N�=0.003 ob-
tained in terms only of the n=0 and 1 LLs of � and M

�z�=2.85.
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nodal line.12 The situation is similar to the behavior occur-
ring through FOST1 in Figs. 1 and 2�a�, where state �A�,
similar to this n=1 LL state, is dominated by the n=1 LL.
However, it is difficult to understand the global phase dia-
gram by concentrating on �01. In fact, as already noted, the
square to triangular structure transition at FOST2 in Fig. 1 is
not found without including even higher LLs �n�2�, and
Fig. 3 shows that the striped phase and FOST2 are not ob-
tained within �01.

The fact that the LO-type state with periodic nodal lines is
pushed up to the high H and low T corners of the H-T phase
diagram to disappear with increasing ��N� is in conflict with
the corresponding result7 obtained with no vortices in which
the LO-type phase tends to disappear away from the Hc2 line.
In fact, the results in Fig. 2 suggest that the disappearance of
the LO-type state is facilitated by the growth of the vortex
phase, absent in the Pauli limit,7 with an amplitude modula-
tion parallel to Q, implying that inclusion of vortices is in-
dispensable in the present issue. On the other hand, the
Hc2�T� curve is similar to the result in the Pauli limit except
for the fact that it is not divergent but flattened in T→0 limit.

Although we have neglected a p-wave pairing
component15 to be induced by the s-wave pairing due to the

nonzero �̃, the present results are still valid if the p-wave
pairing interaction is repulsive. The same thing holds in the
case dominated by the p wave. In the case, presumably ap-
plicable to CePt3Si, where both the singlet and triplet pairing
channels are attractive and equally important, however, an-
other even-odd LL hybridization due to a field-induced cou-
pling between these two pairing states dominates over the
hybridization that appeared in Eq. �2� �Ref. 16� and may
change the pictures mentioned above. Results of other exten-
sions will be reported elsewhere.

In conclusion, the vortex lattice structures and H-T phase
diagrams to occur in Rashba noncentrosymmetric supercon-
ductors in H�c have been examined, and even a small value
of normalized spin-orbit coupling �̃ is found to destroy the
LO-type state and replaces it by a striped vortex lattice. The
obtained results, including the square to triangular lattice
transition close to the inflective point of Hc2�T�, are visible in
materials with standard values of the Maki parameter and
anisotropy. The present results are relevant to CeRhSi3 in
H�c where the inflective Hc2�T� curves have been found.17

We are grateful to S. Fujimoto and Y. Yanase for discus-
sions and to T. Saiki for supplementary calculations.
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